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1. Introduction

The conjecture of Maldacena’s AdS/CFT correspondence [1] provides remarkable insight

into the structure of non-perturbative string theory and quantum gravity. The holographic

dictionary [2, 3] between the asymptotic supergravity behaviour of this string theory and

the dual CFT, and the subsequent holographic renormalization group developed in [4 – 15]

extending previous ideas of Brown and York [16] provide the tools to connect the two sides

of the correspondence in detail. Whilst this holographic renormalization group originated

for the AdS5 ×S5 near horizon geometry of decoupled D3-branes, it is now taken to apply

whenever one considers strings or M-theory on a target spacetime which asymptotically

has an AdS factor.

An interesting generalization of AdS/CFT was proposed by Itzhaki et al [17] where

the decoupling limit of coincident Dp-branes for p ≤ 4 was argued to be dual to 16 su-

percharge Yang-Mills theory in (1+ p)-dimensions, the worldvolume theory living on these

branes [18]. For p 6= 3 the theory is no longer conformal, although there does appear to

exist a generalization of the conformal symmetry [19], which is related to the existance

of a ‘dual frame’ where the geometry has an AdS factor [20]. The holographic aspects of

the duality have been discussed in the context of Dp-branes in [21]. The extraction of the
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dual Yang-Mills thermodynamics from the near extremal behaviour of thermal Dp-brane

black holes [22 – 24] was performed in [25]. Several works have addressed the computation

of two point functions. In particular for p = 1 the stress tensor 2 point functions were

computed [26, 27], and for p = 0 a full harmonic analysis of the vacuum solution was per-

formed [28, 29] and all 2 point functions computed, which was later extended to all p [30].

Shortly after it was argued that in analogy to p = 3, the generalized conformal symmetry

actually constrains all 2 point functions to have a simple form [31]. The map between

worldvolume operators and supergravity fields has also been explored in detail [32, 28, 33].

Recently quasinormal mode spectra have been computed [34] and shear viscosity extracted

from the two point stress energy correlator [35]. Investigation of the analog of the BMN

limit [36] has also been performed [37, 38].

The case of p 6= 3 is of considerable interest as it appears that the lower dimensional

cases, p < 3, are more accessible to direct numerical lattice computation in the Yang-Mills

theory due partly to their superrenormalizablity, and partly as fewer dimensions require less

lattice points for the same lattice spacing. For p = 4 the field theory is non-renormalizable,

and hence numerical tests will not be possible. For this reason we will only consider the

case p < 3 in this paper. Recent numerical attempts to test the correspondence have been

made for p = 1 by computing the stress tensor two point correlation function [39, 40], and

for p = 0 by computing the theory at finite temperature in order to extract dual black hole

entropy [41 – 44]. For the case p = 0 there have also been analytic approximation methods

used to study this thermal behaviour of theory [45 – 49].

With recent development of exact 16 supercharge supersymmetric lattices [50 – 53] it

is reasonable to hope much numerical progress will be made in the future for the low

dimensional cases of the correspondence. This provides a good motivation to consider

more carefully the map between supergravity and field theory. Knowing only predictions

for two point functions and thermal behaviour provides only limited scope for explicit tests

of the correspondence. In principle, if we are able to numerically solve these theories, we

would like to perform detailed tests by deforming the field theory with various sources

and examining its response, and comparing the prediction from the string theory. It is

precisely the technology of holographic renormalization that allows one to make predictions

from supergravity for the connection between deformation by sources and the response in

expectations values in the field theory.

Whereas the Graham-Fefferman expansion [54] and holographic renormalization for the

asymptotic supergravity of the dual string theory has been well developed for the AdS/CFT

case p = 3, it has not been extended to these other non-conformal cases. Holographic

renormalization has been successfully extended to a non-AdS/CFT duality only in the case

of cascading gauge theories [55, 56] and little string theory [57]. We note that previous

work has considered the boundary stress tensor specifically for thermal Dp-brane solutions

in [58 – 60] finding consistency with [25].

Thus the aim of this paper is to extend the Graham-Fefferman expansion and holo-

graphic renormalization to the case of coincident Dp-branes for p < 3. We begin the paper

in section 2 by discussing the truncation of the string theory dual to (1 + p)-dimensional

maximally supersymmetric Yang-Mills to a particular supergravity sector. In section 3 we
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use linear theory to identify the physical deformations of the supergravity vacuum solution,

and compute their asymptotic form. We study a subclass of these in the full non-linear

theory. In section 4 we discuss holographic renormalization for the theory using this asymp-

totic behaviour of the physical modes. We conclude with a brief discussion in section 5.

2. Near horizon geometry of Dp-branes

The duality of Itzhaki et al [17] states that Type IIA/B strings in the near horizon region of

N coincident Dp-branes with p even/odd and p ≤ 4 is dual to 16 supercharge U(N) Yang-

Mills in (1+p)-dimensions with coupling gYM. The string theory may be described by Type

IIA/B supergravity provided the string coupling is small and string frame curvatures are

small compared to α′ = l2s . The bosonic part of this supergravity action in Einstein frame is,

S =
1

2κ2
10

∫

d10x
√
−G

(

R− 1

2
(∂Φ)2 − g

(p−3)
2

s
e

(3−p)
2

Φ

2
|Fp+2|2

)

(2.1)

where gs is the string coupling, defined in terms of the dilaton in the asymptotically flat

region of the spacetime. We use coordinates xA, A = 0, . . . , 9, the Einstein-frame metric is

G, we use |Fp+2|2 = 1
(p+2)!Fσ1···σp+2F

σ1···σp+2 and where F is the (p + 2)-form field strength

for the RR-potential that is sourced by the presence of the Dp-branes and we have ne-

glected the remaining NS-NS and RR form field strengths which may consistently be set

to zero. We have taken 2κ2
10 = (2π)7g2

sℓ
8
s.

The decoupling limit is given by considering fixed g2
YM = (2π)p−2gsα

′(p−3)/2 as α′ → 0.

Following Itzhaki et al [17] finite energy excitations no longer see the asymptotically flat

geometry, and instead in the supergravity approximation see a string frame metric, dilaton

and RR potential,

ds2
string = α′

(

U
7−p

2

gYM(dpN)1/2
ηµν dxµdxν +

gYM(dpN)1/2

U (7−p)/2

(

dU2 + U2dΩ2
8−p

)

)

eΦ = (2π)2−pg2
YM

(

U7−p

g2
YMdpN

)

p−3
4

A01...p =
α′2U7−p

g2
YMdpN

− 1, (2.2)

where dp = 27−2pπ
3(3−p)

2 Γ ((7 − p)/2). Here µ, ν = 0, . . . , p are the coordinates transverse

to the worldvolume of the Dp-branes. The radial variable U is interpreted as the energy

scale associated to strings stretched between the N Dp-branes and a probe Dp-brane at

radial position U , and hence is thought of as an energy scale in the dual Yang-Mills. We

note that as with p = 3 the interpretation of the energy depends on the precise probe being

considered, and supergravity modes infact see an energy scale E ∼ U (5−p)/2/
√

Ng2
YM [21].

For p < 3 the string theory, with effective string coupling eΦ, is weakly coupled in the UV,

U → ∞. The non-trivial dilaton profile indicates the dual theory is not conformal, which

can be simply seen as the Yang-Mills coupling is dimensional.
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The curvature Rstring of the string frame metric derives from the size of the (8 − p)-

sphere, and is given in string units by,

α′Rstring ∼ U3−p

Ng2
YM

. (2.3)

Hence a concern for p < 3 is that for sufficiently large energies U we see a singular behaviour

in the UV boundary region of the vacuum solution. This indicates that the supergravity

truncation might break down and we should take into account α′ corrections. Since holo-

graphic renormalization crucially uses the structure of the supergravity solutions in the

near boundary region we might initially ask whether this can be studied self-consistently.

Let us assume we have a fixed characteristic energy scale U0 that is of interest. The

dimensionless Yang-Mills effective coupling at this energy scale is λ = Ng2
YMUp−3

0 . We may

then form a dimensionless radial variable z = U0/U . The ultraviolet region of the geometry

is then as z → 0. For p = 3 the duality is the familiar AdS/CFT correspondence [1], and the

geometry is AdS5×S5 with constant dilaton, with z being the Poincare coordinate, and z =

0 being the conformal boundary. As for p = 3, we see that z = 0 is a conformal boundary

of the supergravity geometry (independent of frame), and we use the usual terminology

that it is the boundary. For our vacuum solution the string coupling and curvature become,

α′Rstring ∼ 1

λ
z−(3−p)

eΦ ∼ λ
7−p

4

N
z(7−p)(3−p)/4 (2.4)

and hence for supergravity to be consistent in the bulk for z ∼ O(1) we require the strict

large N , and large λ limit. We will be interested in deforming the vacuum solution above

for p < 3 to introduce some characteristic energy scale U0. Having done this we see that

the supergravity solution is valid in this limit near the boundary for the range,

λ−1/(3−p) < z. (2.5)

Thus it is an important point that while the supergravity solution breaks down near the

boundary, provided we have large N and large λ, we may employ the supergravity approx-

imation close enough to the boundary to use the holographic renormalization group.

For the remainder of the paper we will use the Einstein frame metric,

ds2
Einstein = GABdxAdxB = β

(

z−
(7−p)2

8 ηµνdxµdxν +

(

λdp

U2
0

)

z
−p2+6p−25

8
(

dz2 + z2dΩ2
8−p

)

)

eΦ =
gs

β
2(3−p)
(7−p)

z
(3−p)(7−p)

4

A01...p = β
8

7−p
1

z7−p
− 1 (2.6)

where we have defined the dimensionless combination,

β ≡
(

α′U2
0

√

λdp

)
(7−p)

4

, (2.7)
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and we will use units where λdpU
−2
0 = 1. For convenience we also define,

eφ ≡ β
2(3−p)
(7−p)

gs
eΦ. (2.8)

Recall that we have truncated the string theory to the supergravity sector, and have also

truncated to only include the RR (p+2)-form field strength. For the remainder of the paper

we will be concerned with deformations of the above vacuum solution and for convenience

we will make the following further consistent truncations. Firstly we will only consider

deformations that preserve the SO(9 − p) isometry of the (8 − p)-sphere. Hence metric

functions will depend only on the worldvolume coordinates xµ and the radial coordinate r.

Secondly we will restrict to deformations of the field strength given by a purely ‘electric’

potential, so that A01...p is a scalar function and all other components of this antisymmetric

potential vanish.

Let us combine the worldvolume coordinates xµ and radial z into a set xa = {xµ, z}
so a = 0, . . . , (p + 1). Our truncation to homogeneity on the (8 − p)-sphere allows us to

write the 10-d Einstein frame metric as,

GABdxAdxB = β
(

gab (xµ, z) dxadxb + e2S(xµ,z)dΩ2
8−p

)

. (2.9)

With our truncation to electric RR fluctuations only, the field strength is constrained by

its equations of motion to be,

|Fp+2|2 = −(7 − p)2β
(p2

−5p+2)
(7−p) e−(3−p)φ−2(8−p)S (2.10)

and we may write a (p + 2)-dimensional action Strunc that yields the truncated field equa-

tions,

Strunc =
β4V8−p

κ2
10

∫

dp+2x
√−gLtrunc

Ltrunc =
1

2
e(8−p)S

(

R− 1

2
(∂φ)2 + (7 − p)(8 − p) (∂S)2

+(7 − p)(8 − p)e−2S − (7 − p)2

2
e−

(3−p)
2

φ−2(8−p)S

)

, (2.11)

bearing in mind that this is not simply the result of substituting the flux equation above into

the original action [61]. V8−p ≡ 2 (π)
9−p

2 /Γ
(

9−p
2

)

is the volume of the unit (8− p)-sphere.

We will shortly be concerned with the most general deformations of the above vacuum

solution that reside in our consistently truncated sector of the supergravity. In the case

that p = 3 Witten has argued [3] that supergravity degrees of freedom with infinite action

(non-normalizable deformations) are dual to a source term for a specific operator in the field

theory. Finite action (normalizable) deformations for the same degree of freedom are dual

to VEV’s for that operator. In the case of p = 3 the program of holographic renormaliza-

tion, which allows identification of these normalizable and non-normalizable deformations,

has now become very well developed [5 – 15, 62]. The procedure involves constructing a
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renormalized action which is finite for all deformations. This may be achieved by introduc-

ing a geometric cut-off or boundary, and including counterterms that are intrinsic to this

boundary. Then removing the boundary yields a finite result. Hence we will later consider

the action above, integrated only up to a boundary which we will take to reside at z = ǫ.

Calling the regulated action Sreg, we then have,

Sreg(ǫ) =
β4V8−p

κ2
10

{∫

z≥ǫ
dz dp+1xLtrunc −

∫

z=ǫ
dpx

√−γKγ

}

, (2.12)

where now we have included the Gibbons-Hawking boundary term where γ is the induced

metric on the boundary and Kγ is the trace of the second fundamental form.

In considering the deformations of the vacuum solution we will make the following

coordinate choice,

gabdxadxa = γµν (x, z) dxµdxν + e2R(x,z)dz2, (2.13)

to adapt our coordinate system to the boundary we introduce at z = ǫ. We note that

we have not yet locally fixed the gauge. We locally have (p + 2) coordinates that we may

transform, and having set the off-diagonal metric components to zero constrains (p + 1) of

these (p + 2) local transformations. We might use this remaining freedom to set R = 0,

and hence take a Gaussian normal coordinate system to the boundary, but instead we will

leave this freedom explicitly for now, returning to fix it later. In appendix A we give the

10-d field equations obtained after employing our truncations and coordinate choice above.

3. Near boundary deformations of the vacuum

We begin by considering linear perturbations about the vacuum solution above in order to

understand the degrees of freedom present in our truncation, and in addition any residual

gauge invariance. From the Lagrangian above we have gravity coupled to 2 scalar fields

coming from the dilaton φ and (8−p)-sphere radius S. Hence we expect to have degrees of

freedom for a graviton in (p + 2)-dimensions and the 2 scalar degrees of freedom, although

we note that these will be combinations of the fields φ, S and the trace of the (p + 2)-

metric. Imagining that we may deform away from our vacuum solution at the boundary

and then ‘integrate in’ to the interior we may then consider the data we should specify

at the boundary.1 Introducing a cut-off at z = ǫ and treating this as a ‘Cauchy’ surface

one should specify the values of the scalars on this surface and their momenta, given by

their normal derivatives. Let us consider the tensor degree of freedom more carefully.

For the graviton one should specify the induced metric on the surface and its momenta.

As ADM have shown [63], the diffeomorphism invariance implies there are less degrees

of freedom than components of this induced metric. The residual coordinate freedom

within the slice may be thought of as removing the transverse freedom in the induced

metric and the freedom normal to the slice may be thought of as removing the trace.

1We note that of course a hyperbolic system such as the Einstein equations is strictly ill-posed if one

specifies data in such a way, although with suitable analytic restrictions a formal power series expansion

will exist.
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Likewise the constraint equations, the (zz) and (zµ) components of the Einstein equations,

correspondingly constrain the trace and transverse part of the metric momentum. Hence

both in the metric and its momentum, the (p + 1)(p + 2)/2 components are reduced to

p(p + 1)/2 actual degrees of freedom.

We will shortly exhibit the linear solutions showing that they capture precisely the

expected degrees of freedom. There are two types of deformation; the graviton/dilaton and

the sphere. The graviton/dilaton deformations comprise the graviton and a scalar degree

of freedom with the same behaviour near the boundary. Both the field and its momentum

must be specified on the cut-off surface for these degrees of freedom. We identify this scalar

degree of freedom with the dilaton as the sphere scalar is determined in terms of the dilaton.

The sphere deformation is a scalar degree of freedom, independent of the dilaton, again

with value and momentum to specify. As we shall see the sphere deformation behaviour is

more pathological near the boundary, and turning it on takes one away from the decoupled

near horizon region back to the asymptotically flat Dp-brane solution.

Having constructed the full linear solution of the near boundary behaviour, we then

construct the non-linear extension of the graviton/dilaton mode. It is possible to discuss

this mode independently of the sphere mode because the action (2.11) admits a further

consistent truncation which turns off the sphere deformation:

S = − (3 − p)

4(7 − p)
φ. (3.1)

Imposing (3.1) in the field equations obtained from (2.11) one finds that the S and φ

equations of motion become the same, hence this truncation is consistent. Upon imposing

this relation at the level of the action (2.11), one obtains

Sgraviton/dilaton =
β4V8−p

κ2
10

∫

dp+2x
√−gLgraviton/dilaton

Lgraviton/dilaton =
1

2
e
−

(8−p)(3−p)
4(7−p)

φ

(

R− (7 − p)2p − 16

16(7 − p)
(∂φ)2

+
(7 − p)(9 − p)

2
e

(3−p)
2(7−p)

φ

)

, (3.2)

which yield the correct truncated equations of motion, whose deformations consist only

of the graviton/dilaton mode. Since the sphere mode has a pathological behaviour, as we

shall discuss, we do not discuss it non-linearly.

3.1 Linearized analysis of deformations

Before we proceed to discuss the linear solution we must address the residual gauge invari-

ance. There are two sources of this. Firstly we have not fixed the lapse function R in our

metric ansatz. This means that we expect locally to have one function parameterize this

freedom and to be undetermined in any solution. Secondly, the metric form is invariant

under a coordinate transformation only depending on x.

– 7 –
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We now use a power series expansion in z to solve the Einstein equations near the

boundary z = 0 and show that we do indeed capture the 2 scalar and graviton degrees of

freedom correctly. The ansatz we take is,

γij = z
−(7−p)2

8

(

ηij + zq
∞
∑

n=0

ℓq,n
γij (x) zn(5−p)

)

,

2R =
−p2 + 6p − 25

8
log z − zq

∞
∑

n=0

ℓq,n

R (x) zn(5−p),

2S =
−(p − 3)2

8
log z − zq

∞
∑

n=0

ℓq,n

S (x) zn(5−p),

φ =
(7 − p)(3 − p)

4
log z + zq

∞
∑

n=0

ℓq,n

φ (x) zn(5−p), (3.3)

where we must solve for q from the indicial equations which result from the lowest power

of z that arises when expanding the Einstein equations. We have introduced the label ℓq

to indicate the value of q to which the deformation belongs, defined in each case below.

We now state the linear solutions to the Einstein equations. First we consider the

leading behaviours allowed by the indicial equations,

Mode ℓq
ℓq,0
γij

ℓq,0

R
ℓq,0

S
ℓq ,0

φ

q=−(7−p) −1 − (7−p)
2(3−p)ηij

−1,0

φ (8 − p)
−1,0

S + (7−p)(p+1)
2(3−p)

−1,0

φ — —

q=2(7−p) 2 − (7−p)
2(3−p)ηij

2,0

φ 2(8−p)(3−p)(5p−33)
2,0

S +(7−p)(5p2−34p+9)
2,0

φ
2(9−p)(3−p) — —

q = 0 0 —
(p2−9p+18)

2(p−7)

0,0

φ (3−p)
2(7−p)

0,0

φ —

q = (7 − p) 1 constraint (3.4)
(p2−9p+18)

2(p−7)

1,0

φ + ηij 1,0
γij

(3−p)
2(7−p)

1,0

φ —

where
1,0
γij is subject to the constraint equation,

4(7 − p)ηmn∂m
1,0
γni − 2(5 − p)∂iη

mn 1,0
γmn + (3 − p)(7 − p)∂i

1,0

φ = 0. (3.4)

Data which is undetermined in this near boundary analysis is indicated by ‘—’. Notice

that
ℓq ,0

φ is free in each mode and, as we shall see shortly, parameterizes part of our local

residual gauge freedom. Secondly, the subleading terms in each expansion are then deter-

mined by the recursion relations for n > 0 in terms of the deformations at order n−1. The

remainder of the local gauge freedom is exhibited in the fact that these recursion relations

do not determine any
ℓq,n

φ . The relations we find are,

ℓq ,n

S =
(3 − p)

2(7 − p)

ℓq,n

φ

+
(9 − p)

ℓq,n−1

�ηR + (2n(p − 8)(p − 5) + 27p + 16q − 2p(p + q) − 89)
ℓq ,n−1

�ηS

(p − 7)2(n(p − 5) − 2p − q + 14)(n(p − 5) + p − q − 7)

– 8 –
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+
2(−n(p − 5) + p + q − 5)

ℓq ,n−1

R
(p − 7)2(n(p − 5) − 2p − q + 14)(n(p − 5) + p − q − 7)

, (3.5)

ℓq ,n

R =

(

(p − 3)2 + 16n(p − 5) − 16q
)

ℓq,n

φ

2(p − 7)(p − 3)
+

1

3

(

(p − 9)(p − 8)

(p − 7)3(−n(p − 5) − p + q + 7)

+
(5p − 33)(p − 8)

(p − 7)3(−n(p − 5) + 2p + q − 14)
− 6p

(p − 3)2(−n(p − 5) + p + q − 7)

)

ℓq ,n−1

�ηR

+
1

3
(p − 8)

(

6p

(p − 3)2(−n(p − 5) + p + q − 7)
+

(2p − 15)(5p − 33)

(p − 7)3(n(p − 5) − 2p − q + 14)

+
(57 − 4p)p − 201

(p − 7)3(n(p − 5) + p − q − 7)
+

96

(p − 7)2(p − 3)2

)

ℓq,n−1

�ηS

+
2

3

(

2(p − 8)(p − 6)

(p − 7)3(n(p − 5) + p − q − 7)
− 3(p − 1)

(p − 3)2(−n(p − 5) + p + q − 7)

+
(p − 8)(5p − 33)

(p − 7)3(−n(p − 5) + 2p + q − 14)
− 48

(p − 7)2(p − 3)2

)

ℓq ,n−1

R , (3.6)

ℓq ,n
γij = − (7 − p)

2(3 − p)

ℓq ,n

φ ηij

+
(p−9)

ℓq ,n−1

�ηR +(8−p)((2n−1)(p−5)−2q)
ℓq ,n−1

�ηS + (2(n − 1)(p − 5) − 2q)
ℓq ,n−1

R
(p − 3)2(n(p − 5) − q)(n(p − 5) − p − q + 7)

ηij

+
∂i∂j

ℓq,n−1

R + (8 − p)∂i∂j

ℓq,n−1

S + 2
ℓq ,n−1

Rij

(n(p − 5) − q)(n(p − 5) − p − q + 7)
, (3.7)

where �η = ηij∂i∂j . Up to the required order, there is only one divergence in these recur-

sion relations at the following point:

(p, q, n) = (2,−7 + p, 5). (3.8)

One may worry about the choices of (1,−7+p, 3) and (1, 0, 3) where some of the denomina-

tors in the recursion relations vanish, however it is easily verified using the recursion rela-

tions for n < 3 that these cancel amongst themselves. The true divergence found here corre-

sponds to the leading data of the modes q = −(7−p) and q = 2(7−p) coinciding at order z10.

The coincidence of data at a value of z in general means that one should include logarith-

mic terms in the z expansion at that order. For example, in the case where p = 3 it is this

logarithm which gives rise to the field theory conformal anomaly [4]. In section 4.3 we will

indeed see that the p = 2 case will contribute a logarithmic term to the one-point functions.

3.2 A preferred gauge: homogeneous dilaton

As mentioned above the freedom of
ℓq,n

φ for n ≥ 0 in each solution above is a result of our

local residual gauge freedom due to the unspecified lapse. We now explicitly show this
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using the coordinate transformation,

z → z′ = z (1 + F (x, z)) , (3.9)

xi → x
′i = xi + ηij∂jG(x, z), (3.10)

where we linearize in the functions F and G. These transformations induce an infinitesimal

shift in the fields

δφ(x, z) =
(3 − p)(7 − p)

4
F, (3.11)

δγij = z−
(7−p)2

8

(

−(7 − p)2

8
ηijF + 2∂i∂jG

)

, (3.12)

δγiz = z−
(7−p)2

8 ∂i

(

∂zG + z4−pF
)

, (3.13)

δ(2R) = −(3 − p)2

8
F + 2z∂zF, (3.14)

δ(2S) = −(3 − p)2

8
F. (3.15)

In order to preserve our metric ansatz the transformation must have δgiz = 0 and hence

G =
∫

dzz4−pF . Then taking F to have the following z expansion,

F (x, z) = zq
∞
∑

n=0

ℓq,n

F (x) zn(5−p), (3.16)

we see the transformation preserves the form of our metric, and also of our power series

solution above. Hence our gauge freedom is given in terms of the functions
ℓq ,n

F (x) for n ≥ 0

which parameterize the local freedom of our unspecified lapse.

We may now consider various gauge choices. One obvious choice is that one may, for

any p, take the lapse perturbation
ℓq,n

R to vanish, giving the analog of Gaussian normal

coordinates. However, provided p 6= 3 we may instead choose to set either
ℓq,n

φ ,
ℓq ,n

S or some

combination of them to zero by the appropriate choice of
ℓq,n

F (x).

The gauge we choose to work with is that where the dilaton is unperturbed, ie.
ℓq,n

φ = 0.

We will term this the ‘homogeneous dilaton’ gauge, as the dilaton φ is then only a function

of z. Hence we choose our coordinate system such that the relation between our radial

coordinate z and the value of the dilaton is fixed. For the cases p 6= 3 this is a very

physical gauge to choose, as the varying dilaton does pick a preferred radial slicing, and in

particular since the dilaton profile is dual to the running of the Yang-Mills coupling in this

gauge we have ensured in the dual picture that we are renormalizing our Yang-Mills theory

such that the coupling only depends on energy and not position, as is natural from the

field theory point of view. While this gauge is possible for a dual with running coupling,

and hence non-trivial dilaton profile, in the conformal case p = 3 since the vacuum has

constant dilaton one clearly cannot take this gauge, and it is conventional instead to use

the Gaussian-Normal choice δR = 0, familiar from the Graham-Fefferman expansion.
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Another important reason that the homogeneous dilaton gauge is attractive is that

from the bulk string theory perspective there are several natural choices of frame - the

Einstein frame which we are using, the string frame or the ‘dual’ frame. The metric in

each frame differs by a conformal factor which is a power of eφ. As is usual when considering

choices of frame, nothing physical should depend on which choice one makes. An attractive

feature of our gauge is that this is manifest rather simply in that under a change of frame,

the only change to our near boundary expansion (3.3) is the leading z behaviour, and the

coefficients
ℓq,n
γij (x),

ℓq ,n

R (x),
ℓq ,n

S (x) are invariant, as are their recursion relations (3.5).

Note that in addition to the local coordinate freedom above, we may also perform a

coordinate transformation xi → x
′i = xi+ξi(x), which only depending on the x coordinates

is the remaining global residual freedom.

3.3 The physical modes

Let us now reconsider the behaviour of our linear deformations using the homogenous

dilaton gauge. Now
ℓq,n

φ = 0 for n ≥ 0. We have,

Mode ℓq
ℓq,0
γij

ℓq,0

R
ℓq,0

S Description

q=−(7−p) −1 0 (8 − p)
−1,0

S — Sphere non-normalizable

q=2(7−p) 2 0 (8−p)(5p−33)
(9−p)

2,0

S — Sphere normalizable

q = 0 0 — 0 0 Graviton/Dilaton non-normalizable

q = (7 − p) 1 constraint (3.17) ηij 1,0
γij 0 Graviton/Dilaton normalizable

where
1,0
γij is subject to the constraint equation,

4(7 − p)ηmn∂m
1,0
γni − 2(5 − p)∂iη

mn 1,0
γmn = 0. (3.17)

Let us now count our degrees of freedom. We see in our homogenous dilaton gauge

the modes q = −(7 − p),+2(7 − p) are scalar deformations only involving the (8 − p)-

sphere. Hence these constitute one scalar and its momentum degree of freedom. The

remaining non-trivial modes, q = 0, q = (7−p) are deformations only of the metric, leaving

the sphere unperturbed. Clearly these include the graviton degrees of freedom we expect

to find. Note that the transverse part of
0,0
γij is unphysical due to the global coordinate

freedom xi → x
′i = xi + ξi(x), and likewise the momentum q = (7 − p) mode has the

explicit constraint (3.17) on the transverse part. However, we see that in this gauge the

trace of γij is unconstrained for both q = 0, (7−p), and hence this trace forms the remaining

scalar degree of freedom that we expect to find. The trace of the metric and the scalar

degrees of freedom mix in general, and since here S is unperturbed we may attribute this

scalar to the dilaton degree of freedom.

Hence we use the terminology that the q = −(7−p),+2(7−p) are the Sphere deforma-

tions, and the q = 0, q = (7−p) are the Graviton/Dilaton deformations. We note now, and

will discuss in more detail later, that the q = −(7 − p) sphere and q = 0 graviton/dilaton

– 11 –



J
H
E
P
1
0
(
2
0
0
8
)
0
3
7

modes of deformation give an infinite regulated action as the cut-off surface is removed by

taking ǫ → 0. Hence we term this non-normalizable. Conversely the q = +2(7 − p) sphere

and q = +(7 − p) graviton/dilaton modes are of finite regulated action and we term them

normalizable.

We think of the non-normalizable part of the sphere and metric/dilaton deformations

as being ‘Dirichlet’ data that must be fixed at the boundary, and the normalizable part

of the sphere and metric/dilaton deformations are then determined dynamically by the

solution of the Einstein equations. In the duality the non-normalizable modes determine

the sources for certain operators that deform the field theory action, and the normalizable

modes determine the VEVs of these operators.

Taking the limit p → 3, we indeed recover the expected scalings of the perturbations

with the Poincare coordinate z. The graviton/dilaton being marginal operators have a non-

normalizable z0 and normalizable z4 behaviour. Hence we expect that the graviton/dilaton

non-normalizable deformations are dual to sources for the stress-tensor and Lagrangian

density (note that the trace of the stress-tensor is simply the Lagrangian density). For

p = 3 the sphere deformation mode has non-normalizable behaviour z−4 corresponding to

an irrelevant operator. This mode has been discussed in [64 – 67], and is conjectured to

be dual to the leading DBI correction to the open string Yang-Mills description, ie. to an

operator ∼ α′2F 4. Being irrelevant, one should only consider such a mode perturbatively.

Turning such a deformation on by a finite amount ‘destroys’ the asymptotic behaviour of

the solution by reversing the decoupling limit (where the DBI corrections vanish). Here

for p 6= 3 it is natural to assume the same remains true, and indeed we see the linear

theory predicts the non-normalizable sphere deformation would indeed strongly deform

the asymptotic solution if we were to study it non-linearly. In the following we shall

proceed to only treat the graviton/dilaton deformations non-linearly, and will consider the

sphere perturbation linearly.

3.4 Non-linearized analysis of graviton/dilaton deformations

We now perform a nonlinear analysis for the graviton/dilaton deformations, setting to zero

the sphere perturbation. We again compute the graviton/dilaton near boundary behaviour

as a power series expansion in z proceding up to z7−p order which will enable us to perform

the holographic renormalization in the following section. The computation is performed in

the homogeneous dilaton coordinates, and so φ is undeformed from its form in the vacuum

solution. The power series expansion takes the form analogous to that in the linear theory,

γij = z
−(7−p)2

8

(

0,0
γij(x) +

0,1
γij(x)z5−p +

1,0
γij(x)z7−p + · · ·

)

,

2R =
−p2 + 6p − 25

8
log z −

(

0,0

R (x) +
0,1

R (x)z5−p +
1,0

R (x)z7−p + · · ·
)

,

2S = −(p − 3)2

8
log z −

(

0,0

S (x) +
0,1

S (x)z5−p +
1,0

S (x)z7−p + · · ·
)

,

φ =
(7 − p)(3 − p)

4
log z, (3.18)
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up to the order of interest. The non-linear generalization of the q = 0, (7−p) metric/dilaton

modes are then given by,

Mode ℓq n
ℓq ,n
γij

ℓq,n

R
ℓq,n

S

q = 0(7 − p) 0 0 — 0 0

q = 0(7 − p) 0 1 1
(p−5)

0,0

Rij
1

(p−9)

0,0

R 0

q = 1(7 − p) 1 0 constraint (3.20)
0,0

γij 1,0
γij 0

(3.19)

where
0,0

R and
0,0

Rij are the Ricci scalar and tensor of the metric
0,0
γij, and where

1,0
γij is subject

to the constraint equation,

4(7 − p)
0,0

∇j 1,0
γji − 2(5 − p)∂i

0,0

γmn 1,0
γmn = 0. (3.20)

4. Holographic renormalization

In the previous section we have computed the near boundary behaviour for deformations

of the vacuum. In this section we proceed to compute the regulated action evaluated

on-shell on our near boundary solutions above. We denote the regulated action evalu-

ated on-shell as Son−shell
reg (ǫ). The divergences in this when one removes the regulator

are, by definition, due to non-normalizable deformations. These divergences arise in our

deformations from only a few leading terms in the expansions of the non-normalizable

deformations. Hence only knowledge of the first few terms is typically required to com-

pute them. Following [15, 11, 12, 8, 14] we renormalize the on-shell action by introduc-

ing counterterms on the regulator boundary, Sct(ǫ), yielding a new renormalized action

Srenorm = limǫ→0

(

Son−shell
reg (ǫ) − Sct(ǫ)

)

which is finite when the regulator is removed, and

is a function of the data in our on-shell deformation.

Following the usual prescription the non-normalizable modes are dual to sources for

certain operators in the dual Yang-Mills. Then evaluating the renormalized action on our

deformations, and varying with respect to the data of the non-normalizable modes allows

us to compute the dual VEVs for these operators. Whilst evaluating the counterterm

variations is simple as contributions only come from the boundary itself, Son−shell
reg involves

an integral over all the radial coordinate, and therefore whilst computing divergences only

requires a few leading terms of the z expansions to be known, naively computing variations

with respect to the solution data requires knowledge to all orders in our z expansions.

However part of the elegance of holographic renormalization is that this is not the case. In

fact varying Son−shell
reg one may then perform an integration by parts to yield a contribution

on the boundary, and a bulk contribution that vanishes by virtue of the equations of motion.
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One then finds,

δSon−shell
reg (ǫ) =

β4V8−p

2κ2
10

∫

z=ǫ
dp+1x

√−γe(8−p)S

(

[

e−R∂zφ
]

δφ−
[

2(8−p)
(

K+(7−p)e−R∂zS
)]

δS

−
[

Kij−γijK−γij(8 − p)e−R∂zS
]

δγij

)

, (4.1)

where Kij ≡ e−R

2 ∂zγij , K ≡ tr (K). Using this, variations of Son−shell
reg evaluated for our

power series solutions may be conveniently computed using only the leading terms of the

expansion, with higher terms yielding no contribution in the ǫ → 0 limit. Note that

provided the renormalized action Srenorm is indeed finite for all data of our near boundary

solutions, then variations of it with respect to these data will automatically be finite.

We have defined our regulator boundary to be at coordinate location z = ǫ. How-

ever depending on our coordinate choice, this may be at different physical locations. The

obvious choice is to take the regulator to be on constant dilaton surfaces. We have dis-

cussed that for p 6= 3 a physical choice of radial coordinate z is precisely that picked out

by constant φ surfaces. Hence using this coordinate system our z = ǫ boundary is indeed

a constant dilaton surface. We will use the homogeneous dilaton (HD) coordinate system

discussed above, and the counter terms we find will be those particular to that gauge.

Hence we will call our counter term action SHD
ct to emphasize that one must use the homo-

geneous dilaton coordinates when computing the on-shell renormalized action. It would be

a straightforward exercise to generalize the action to not be restricted to this gauge, but

we note that one should also include the off-diagonal components of (2.13) in order to be

fully general and for simplicitly we do not consider this further here.

We begin by computing the renormalized action for non-linear deformations of the

graviton/dilaton. We then proceed to extend this in the linear theory to include countert-

erms for the sphere deformations.

4.1 Holographic renormalization of graviton/dilaton deformations

The action evaluated on-shell for graviton/dilaton deformations takes the following form

in its ǫ expansion,

Sreg(ǫ) ∼
β4V8−p

2κ2
10

∫

z=ǫ
dp+1x

√

−0,0
γ







0,0

f(x)

ǫ7−p
+

0,1

f(x)

ǫ2
+ O

(

ǫ0
)






, (4.2)

where
ℓq,n

f(x) denotes some function of q-mode deformations up to order n. Thus there

are two terms which diverge as the cutoff ǫ is removed and we expect to have to add

counterterms with no derivatives to cancel the leading divergence, and two derivatives to

cancel the subleading one. We will employ our physically motivated homogeneous dilaton

gauge now. Hence on the regulating surface the value of the dilaton will be constant, and

simply related to ǫ as for the vacuum solution. We therefore use the ansatz,

SHD
ct (ǫ) =

β4V8−p

2κ2
10

∫

z=ǫ
dp+1x

√
γ
(

Aec1φ+c2S + Bec3φ+c4S + Cec5φ+c6SRγ

)

, (4.3)
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where Rγ is the Ricci scalar of the induced metric at the regulator boundary γij . We have

not included boundary derivatives of φ in the action as φ is constant on the regulator sur-

face. In addition since S is also homogeneous on the boundary surface for the deformations

in question we also have not included its derivatives in the action.

Substituting our deformations (3.18), (3.19) into the regulated action and comparing

with the counterterm action, we find that the renormalized action is finite provided we

choose,

A + B = 9 − p C =
1

2
(4.4)

c1 =
(3 − p)

4(7 − p)
(c2 + p − 7) , c3 =

(3 − p)

4(7 − p)
(c4 + p − 7) , c5 =

(3 − p)

4(7 − p)
(c6 + p − 9) .

We may now vary the renormalized action with respect to the non-normalizable data,
0,0

γij ,

in our deformation. Following from p = 3 we interpret
0,0

γij as the metric for the dual Yang-

Mills theory, and hence the source for the Yang-Mills stress tensor. Then the expectation

value of this stress tensor, 〈Tij〉, is given by this variation,

δSren = ℓim
ǫ→0

(

δSreg(ǫ) − δSHD
ct (ǫ)

)

=

∫

dp+1x

(

−1

2

√

−0,0
γ δ

0,0

γij 〈Tij〉
)

, (4.5)

and explicit computation gives,

〈Tij〉 =
β4V8−p

4κ2
10

(

+2(7 − p)
1,0
γij − (5 − p)

0,0

γmn 1,0
γmn

0,0
γij

)

. (4.6)

As a consequence of the (iz) Einstein constraint equation we find that the dual field theory

stress tensor is conserved in the metric
0,0
γij , so that,

0,0

∇i 〈Tij〉 = 0. (4.7)

Whereas in the p = 3 case the trace of the stress tensor is determined simply by the con-

formal anomaly and not dynamically, in our case here, p 6= 3, the trace is dynamical and

is governed by the trace of the metric deformation which in our gauge is the dilaton scalar

degree of freedom. The trace of the stress-tensor is simply proportional to the Lagrangian

density of the Yang-Mills theory, and hence we see that the dual operator to the trace of

the metric is this Lagrangian density as we should expect for the dual to the dilaton degree

of freedom which directly determines the Yang-Mills coupling.

4.2 Example: thermal Dp-brane

As an example we consider the particular deformation due to turning on finite tempera-

ture. Then the solution of interest is the decoupled limit of the thermal Dp-brane solution.

This is as for the vacuum solution given above, except that the Einstein-frame metric is
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deformed as [22 – 24],

ds2 = z̃−
(7−p)2

8

(

−1 +

(

r0

r−

)7−p

z̃7−p

)

dt2 + z̃−
(7−p)2

8 δijdxidxj

+r2
−z̃

−p2+6p−25
8

(

1 −
(

r0

r−

)7−p

z̃7−p

)−1

dz̃2 + r2
−z̃−

(3−p)2

8 dΩ2
8−p, (4.8)

where r7−p
0 ≡ r7−p

+ − r7−p
− , and r7−p

− = dpλα′5−pU3−p
0 . Conveniently this solution is already

in our homogeneous dilaton coordinate system. Performing a simple rescaling of z̃,

z̃ = β
− 8

(7−p)2 z, (4.9)

we obtain the metric in a form compatable with our ansatz,

ds2 = β

{

z−
(7−p)2

8

(

−1 +

(

r0

r−

)7−p

β
− 8

(7−p) z7−p

)

dt2 + z−
(7−p)2

8 δijdxidxj

+z
−p2+6p−25

8

(

1 −
(

r0

r−

)7−p

β
− 8

(7−p) z7−p

)−1

dz2 + z−
(3−p)2

8 dΩ2
8−p

}

, (4.10)

where we have chosen units so dpλU−2
0 = 1. The deformation is of our graviton/dilaton

type. There is no non-normalizable part as
0,0
γij = 0, and only the normalizable data

1,0
γtt

is non-vanishing. Calculating the expectation value of the field theory stress-energy ten-

sor from the obtained relations (4.6), and re-inserting appropriate powers of dpλU−2
0 on

dimensional grounds we find

〈ρ〉 = 〈Ttt〉 =
V8−p

κ2
10

(9 − p)

4
r7−p
0 (4.11)

〈P〉 = 〈Txx〉 =
V8−p

κ2
10

(5 − p)

4
r7−p
0 , (4.12)

where xx denotes any of the spatial worldvolume directions, and 〈ρ〉 , 〈P〉 are the expecta-

tion values of the energy density and pressure respectively.

In the paper [58] the field theory stress tensor for this deformation was computed by

choosing a frame where the vacuum solution has an AdSp+2 factor - the ‘dual-frame’ -

and then using the holographic stress tensor for the AdS part of the metric evaluated on

this solution. The result is the same. Furthermore in that reference the energy density

and pressure were computed using black hole thermodynamics for the asymptotically flat

Dp-brane solution. Subsequently taking the decoupling limit of these thermodynamic ex-

pressions gave rise to the same energy density and pressure, showing consistency with the

holographic approach.

4.3 Holographic renormalization of linearized sphere deformations

In this section we extend the holographic renormalization analysis to include also the

remaining sphere deformation. However, since the non-normalizable part of this strongly
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changes the asymptotic behaviour of the solution, we only consider this mode and its

normalizable component linearly. We use the linear deformations of section 3.3 and extend

the counterterm action found above for the graviton/dilaton deformation to this case. Since

S is now not homogeneous when the sphere deformations are turned on we may add to

our graviton/dilaton counterterm action (4.3) kinetic terms involving S on the boundary.

Hence we use the counterterm action,

SHD
ct (ǫ) =

β4V8−p

2κ2
10

∫

dp+1x
√

γ

(

[

Aec1φ+c2S + Bec3φ+c4S + Cec5φ+c6SRγ

]

+
[

Dec7φ+c8S
�γS+Eec9φ+c10S

�
2
γS+Fec11φ+c12S

�
3
γS+Gec13φ+c14S

�
4
γS
]

)

z=ǫ

, (4.13)

where the terms in the first bracket are as for the graviton/dilaton calculation above. By

expanding the first two terms in this bracket to quadratic order in the deformations one can

see that there are only three independent terms, thus one expects a single ambiguity here.

For the second bracket only the combinations Dc8, Ec10, F c12 and Gc14 are independent

parameters in the linear theory, as can be seen by integrating by parts.

In our linear solution the non-normalizable components are determined by the data
0,0
γij and

−1,0

S , and give rise to the divergences in the regulated action. To determine the

remaining counterterm parameters we look at variations with respect to this data, and

require that the divergences cancel. This is equivalent to requiring cancellation of diver-

gences in the action to quadratic order in the deformation, provided the undeformed action

is regular. We find that the remaining counterterm parameters are determined as,

A =
2(p − 8)(p − 7)3

(p−9)c2
2+4(p−8)(p−7)c2+2(p−8)(p−7)2

, D c8 =
3p − 23

2
, (4.14)

E c10 =
(7 − p)2

4(11 − p)(9 − p)(8 − p)
, F c12 =

(7 − p)2

24(8−p)2 (p2−20p+99)
,

G c14 = − (7 − p)2(2p − 25)

48(11 − p)2(9 − p)(8 − p)3(1 + p)
, c4 =

2(8−p)(7−p)(c2+p−7)

c2(9−p)−2(8−p)(7−p)
,

c6 =
4(8 − p)

(9 − p)
, c2k+1 =

(3−p)

4(7−p)
(c2k+2+p−3−2k)

for k = 3, 4, 5, 6. Indeed for this set of counterterms the undeformed action is finite, and

hence the deformed action is finite too, up to quadratic order in the deformations. Thus

we find no ambiguity in the counterterm ansatz for the linear theory.

As discussed above, the sphere non-normalizable mode is dual to a source for a higher-

dimension correction OS to the Yang-Mills action, thought to be ∼ α′2F 4. Varying the

renormalized action with respect to the non-normalizable data
−1,0

S , we may then obtain

the VEV of this operator 〈OS〉 which is determined by the normalizable part of the sphere

deformation,

δSren = ℓim
ǫ→0

(δSreg(ǫ) − δSct(ǫ)) =

∫

dp+1x

(

−〈Tij〉
2

δ
0,0

γij − 〈OS〉
2

−1,0

δS

)

. (4.15)
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Computing the variations explicitly, we find

〈Tij〉 =
β4V8−p

4κ2
10

(

2(7 − p)
1,0
γij − (5 − p)ηmn 1,0

γmnηij

)

(4.16)

〈OS〉 = −β4V8−p

κ2
10

(

3(8 − p)(7 − p)3

(9 − p)

)

2,0

S , (4.17)

where the stress tensor is simply the linearized version of our expression above (4.6). We

emphasize that these expressions are only valid to linear order in the deformation about

the vacuum solution.

For D2-branes there is an additional divergent contribution to the action, proportional

to
−1,0

�
5
ηS log z. Obtaining the precise coefficient for this term requires extending our recursion

relations to include logarithms at the order n = 5. This is of course coincident with a

divergence of the recursion relations (3.8). In order to have a finite action and one point

function a new logarithmically divergent counterterm would have to be added to the action,

as for the conformal anomaly for p = 3.

The log divergence occurs for p = 2 and depends only on the non-normalizable data
−1,0

S . Therefore a trick is to deform p = 2 to p = 2 − |δ|, |δ| ≪ 1, where our renormalized

action is now finite, as is the corresponding one-point function for OS obtained by variation.

From this we know that even for p = 2, the expression for the one point function (4.17) is

the correct one provided we added the appropriate log divergent counterterm to the action.

However, as we have discussed, the non-normalizable sphere deformation appears to

only be treatable perturbatively ie. the source in the dual Yang-Mills can’t be turned

on. Whilst we have to consider this non-normalizable component to use the holographic

technology to compute the one-point function for OS , in practice we would be interested

in vacuum deformations that do not have the non-normalizable sphere component in, and

hence we should not encounter this log divergence when evaluating the action on-shell.

5. Discussion

We have discussed the holographic renormalization for coincident Dp-branes, in part mo-

tivated by recent numerical lattice attempts to study the strongly coupled Yang-Mills

description directly. In the future one would hope that detailed comparisons with the dual

closed string theory at least in the supergravity limit could be made, using the holographic

dictionary which we are considering here. As we have seen the structure of the analysis is

similar to that of the p = 3 AdS/CFT case, the principle difference being that we have used

a physical gauge derived from the running of the dilaton which is not possible for p = 3.

In principle holographic renormalization provides a very powerful predictive tool for

the dual Yang-Mills theory, relating sources explicitly to specific vacuum expectation val-

ues. However in order to use this predictive power bulk solutions must be found and cast in

our generalized Graham-Fefferman form in order to read off these predictive relations. The

key point is that consideration of the bulk solutions requires imposing physical boundary

conditions in the IR of the geometry, as well as fixing the non-normalizable sources in the
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UV. For p = 0 as noted earlier a full linear analysis has been performed [28], and this

might be extended to general p and used to give predictions for the behaviour of one-point

functions using our holographic renormalization group. However a linear analysis will not

allow one to compute the response of the theory to sources, which manifestly requires

non-linear interaction. Progress in developing techniques to solve the non-linear bulk Ein-

stein equations has developed on various fronts, in particular the derivative expansions

for hydrodynamics [68] which has recently been generalized to include non-normalizable

sources [69], and also analytic and numerical understanding of non-trivial relevant super-

gravity solutions [70 – 73]. Development of the hydrodynamic derivative expansion is so

far for AdS/CFT only, but it is clear that it may be extended to the Dp-brane cases for

p < 3, although being manifestly Lorentzian it is unlikely it will allow lattice tests of the

correspondence. It will be interesting in future to see if any of these techniques may ap-

plied to find non-trivial bulk solutions, for various p, deformed by boundary sources which

are of interest as probes of the correspondence that might be tested on the lattice via the

holographic renormalization group.

We have considered deformations of the (8−p)-sphere, which we believe from previous

arguments made for p = 3 are dual to DBI corrections to the Yang-Mills action OS ∼
α′2F 4. It is interesting that at the non-linear level in the supergravity these deformations

decouple from the graviton/dilaton deformations and can hence be ‘turned off’. In the

context of Yang-Mills lattice simulations, DBI corrections will not be included, and hence

one is unlikely to wish to consider the non-normalizable part of this sphere deformation.

One might naively conclude that the normalizable part of the sphere deformation is also

uninteresting, as without its non-normalizable source turned on it will be absent and hence

can only have a trivial one-point function for OS . Whilst it is true that without its source

it is consistent to set it to zero, this need not be the case. For example, in the Lorentzian

context one might consider the evolution of initial data in the supergravity that has a

normalizable sphere deformation component. More likely to be of interest for numerical

simulations of Yang-Mills one might be interested in testing multi-point functions that

involve two or more OS operators.

Interestingly there seems to be no obstacle in applying the results obtained here to the

D-instanton, p = −1, for which the worldvolume theory is the IKKT model [74]. There

are of course no worldvolume directions, and so the only physical deformation would be

that of the sphere. Due to its lack of spatial extent, the IKKT model may be the easiest

setting in which to numerically simulate a theory with string dual. Developing a better

understanding of the DBI corrections to this model, and effect on the supergravity solution

of deforming non-linearly by the sphere non-normalizable mode might be a promising

direction for new tests. Numerical work has been conducted on this model [75], although

so far only employing a loop approximation.

It has been a deliberate choice in this work not to use the ‘dual frame’ discussed in [20].

In this frame, an AdS factor does emerge in the geometry, and in particular the boundary

stress tensor can be extracted using similar methods to the usual AdS/CFT case as was

done for the specific thermal deformation (4.8) above in [58]. The reason we have not

used the dual frame is that whilst the calculations may appear closer to what one does
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in the AdS/CFT case, they are no simpler and we feel little intuition is gained this way.

The dual theory is not a conformal theory and the running of the dilaton is an important

aspect of this and allows us to employ the useful homogenous dilaton gauge. We believe

the simplest conceptual way to apply the holographic renormalization is as we have done

here, simply to consider physical deformations, identify those of divergent and finite bare

action, and construct local counterterms for the bulk regulated action to render it finite

when evaluated on-shell.

There are various other interesting directions for future work. We have truncated

to the supergravity deformations which are homogeneous on the (8 − p)-sphere, and also

to only electric fluctuations of the (2 + p)-form RR field strength. Including non-linear

deformations of the remaining form fields would be interesting. Likewise, considering the

modes of deformation that are inhomogeneous on the sphere would be interesting and

could presumably be done using the methods of ‘Kaluza-Klein’ holography discussed for

AdS/CFT in [76]. In addition, a consideration of the Coulomb branch of the Yang-Mills

theory via the decoupling limit of multi-centered Dp-brane solutions and comparison to

the gauge theory would likely follow along the lines of [64] in the AdS/CFT case.
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A. Field equations

To obtain the field equations associated with the metric ansatz (2.9), (2.13) we perform a

reduction of the terms in the field equations directly. The full, unreduced field equations

for our action (2.1) are, for the dilaton,

�Φ =

(

3 − p

4

)

g
(p−3)

2
s e

3−p

2
Φ |Fp+2|2 , (A.1)

and for the RR form,

∇µ

(

g
(p−3)

2
s e

3−p

2
ΦFµσ1···σp+1

)

= 0, (A.2)

and the Einstein equations

Rµν − 1

2
GµνR =

1

2
∂µΦ∂νΦ − 1

4
Gµν (∂Φ)2 +

1

2

g
(p−3)

2
s e

3−p

2
Φ

(p + 1)!
Fµσ1···σp+1F

σ1···σp+1
ν

−1

4
Gµνg

(p−3)
2

s e
3−p

2
Φ |Fp+2|2 . (A.3)

Upon inserting our metric ansatz (2.9), (2.13) and using Cartan’s structural equations to

obtain the curvature terms, we obtain field equations in terms of the ‘reduced’ quantities.

That is, covariance is with respect to the p + 1-dimensional brane-metric γij , and the

metric functions R and S are scalar degrees of freedom. Primes indicate z derivatives,

Kij ≡ e−R

2 ∂zγij , K ≡ tr (Kij) and i, j = 0, . . . , p. R is the Ricci scalar of γij.
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Einstein- ij:

Ri
j −

1

2
δi
jR =

(

∇j∂
iR − δi

j�R
)

+ (8 − p)
(

∇j∂
iS − δi

j�S
)

+
(

∂iR∂jR − δi
j (∂R)2

)

+ (8 − p)

(

∂iS∂jS − 1

2
(9 − p)δi

j (∂S)2
)

−(8 − p)δi
j (∂R · ∂S) +

1

2

(

∂iφ∂jφ − 1

2
δi
j (∂φ)2

)

+e−2R

(

−1

2
(8 − p)(9 − p)S′2δi

j −
1

4
φ′2δi

j + (8 − p)R′S′δi
j − (8 − p)S′′δi

j

)

+e−R
(

(8−p)
(

Ki
j−δi

jK
)

S′+
(

Ki
j

)′−δi
jK′
)

+

(

Ki
jK− 1

2
δi
j

(

K2+K · K
)

)

+
(7 − p)

2
δi
j

(

e−2S(8 − p) − (7 − p)

2
e−

(3−p)
2

φ−2(8−p)S

)

. (A.4)

Einstein- z, i:

∇j
(

Ki
j−δi

jK
)

=−(8−p)Ki
j∂

jS−e−R

(

(8−p)
(

S′∂iR−S′∂iS−∂iS′
)

− 1

2
φ′∂iφ

)

. (A.5)

Einstein- zz:

0 = −R + 2(8 − p)�S + (8 − p)(9 − p) (∂S)2 +
1

2
(∂φ)2

+e−2R

(

(7 − p)(8 − p)S′2 − 1

2
φ′2

)

+ 2(8 − p)e−RKS′ + K2 −K · K

−(7 − p)

(

e−2S(8 − p) − (7 − p)

2
e−

(3−p)
2

φ−2(8−p)S

)

. (A.6)

Einstein- θθ:

0 = −R
2

+ �R + (7 − p)�S + (∂R)2 +
1

2
(7 − p)(8 − p) (∂S)2 + (7 − p) (∂R · ∂S)

+
1

4
(∂φ)2 +

1

4
e−2Rφ′2 + (7 − p)e−2R

(

(8 − p)

2
S′2 + S′′ − S′R′

)

(A.7)

+e−R
(

K′ + (7 − p)KS′
)

+
1

2

(

K · K + K2
)

.

−(7 − p)

2

(

e−2S(6 − p) +
(7 − p)

2
e−

(3−p)
2

φ−2(8−p)S

)

. (A.8)

φ field equation:

0 = �φ + ∂R · ∂φ + (8 − p)∂S · ∂φ + e−2R
(

φ′′ − R′φ′ + (8 − p)S′φ′
)

+e−RKφ′ +
(3 − p)(7 − p)2

4
e−

(3−p)
2

φ−2(8−p)S . (A.9)

These ‘reduced’ field equations have been verified by evaluating them explicitly in terms

of general components for our metric ansatz (2.13), and comparing to the unreduced equa-

tions (A.1), (A.2), (A.3).
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